Gender
: gender
Gender is a lexical feature of nouns and inflectional feature of other parts of speech (adjectives, verbs) that mark agreement with nouns. There are three values of gender: masculine, feminine, and neuter.
See also the related feature of Animacy.
Masc
: masculine gender
Nouns denoting male persons are masculine. Other nouns may be also grammatically masculine, without any relation to sex.
Examples
- добродій “gentleman”
- замок “castle”
- чоловік “man”
- пристрій “machine”
- голова “chairman”
- суддя “judge”
Note that the last two nouns above can also function as feminine (technically these are two different lemmas), depending on whether these functions designate men or women, with exactly the same (feminine in this case) morphological paradigm and agreeing with adjectivals and verbal forms in the feminine form, respectively. (Historically they are feminine too, with the typical endings -а or -я .)
Fem
: feminine gender
Nouns denoting female persons are feminine. Other nouns may be also grammatically feminine, without any relation to sex.
Examples
- жінка “woman”
- троянда “rose”
- пісня “song”
- кістка “bone”
Neut
: neuter gender
This third gender is for nouns that are neither masculine nor feminine (grammatically). Nouns whose nominative suffix is -о or -е (including a large group of deverbative nouns denoting actions) are usually neuter.
Examples
- місто “city”
- море “sea”
- курча “chicken”
- ставлення “attitude”
Treebank Statistics (UD_Ukrainian)
This feature is universal.
It occurs with 3 different values: Fem
, Masc
, Neut
.
597 tokens (36%) have a non-empty value of Gender
.
416 types (59%) occur at least once with a non-empty value of Gender
.
357 lemmas (59%) occur at least once with a non-empty value of Gender
.
The feature is used with 7 part-of-speech tags: NOUN (243; 14% instances), VERB (112; 7% instances), PRON (88; 5% instances), ADJ (78; 5% instances), PROPN (49; 3% instances), DET (23; 1% instances), NUM (4; 0% instances).
NOUN
243 NOUN tokens (94% of all NOUN
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which NOUN
and Gender
co-occurred: Animacy=Inan (177; 73%), Number=EMPTY (177; 73%).
NOUN
tokens may have the following values of Gender
:
Fem
(106; 44% of non-emptyGender
): груші, модель, бджолами, бджоли, гривень, думку, копанку, математики, мураха, нічMasc
(115; 47% of non-emptyGender
): спокій, хлопець, Начальник, доларів, футболіст, брат, водій, вокзалі, математики, номерNeut
(22; 9% of non-emptyGender
): яблуку, Село, яблука, Взуття, Фото, алібі, бажання, використання, вікна, збереженняEMPTY
(15): квіти, дітей, Діти, ЕНТЕР, дітям, людей, макарони, селяві, труднощі, усюд
Gender
seems to be lexical feature of NOUN
. 100% lemmas (181) occur only with one value of Gender
.
VERB
112 VERB tokens (35% of all VERB
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which VERB
and Gender
co-occurred: Number=EMPTY (112; 100%), Mood=Ind (112; 100%), Tense=Past (112; 100%), Person=EMPTY (112; 100%), VerbForm=Fin (112; 100%), Aspect=Perf (60; 54%).
VERB
tokens may have the following values of Gender
:
Fem
(21; 19% of non-emptyGender
): була, мила, обманювала, полюбляла, Почала, виглядала, говорила, думала, здавалася, йшлаMasc
(74; 66% of non-emptyGender
): був, пішов, сказав, виграв, зберігався, зустрів, намалював, повернувся, прийшов, ВипавNeut
(17; 15% of non-emptyGender
): було, сталося, Лило, гнітило, грало, довелося, дійшло, привалило, розповідалося, трапилосяEMPTY
(207): є, каже, плаває, зберігати, навчають, Кажуть, буде, зароблено, копати, мусять
Paradigm бути | Masc | Fem | Neut |
---|---|---|---|
був | була | було |
Gender
seems to be lexical feature of VERB
. 95% lemmas (59) occur only with one value of Gender
.
PRON
88 PRON tokens (58% of all PRON
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which PRON
and Gender
co-occurred: Number=EMPTY (88; 100%), Case=Nom (58; 66%), Animacy=EMPTY (51; 58%), Person=3 (51; 58%), PronType=Prs (51; 58%).
PRON
tokens may have the following values of Gender
:
Fem
(12; 14% of non-emptyGender
): вона, її, їйMasc
(43; 49% of non-emptyGender
): він, його, ним, хто, Ким, Той, йомуNeut
(33; 38% of non-emptyGender
): це, що, те, все, всім, то, тому, цього, чого, чогосьEMPTY
(65): ти, я, дехто, вони, мені, мене, ми, нас, них, ніхто
Gender
seems to be lexical feature of PRON
. 100% lemmas (10) occur only with one value of Gender
.
ADJ
78 ADJ tokens (85% of all ADJ
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which ADJ
and Gender
co-occurred: Number=EMPTY (78; 100%), NumType=EMPTY (68; 87%), Voice=EMPTY (59; 76%), VerbForm=EMPTY (59; 76%), Aspect=EMPTY (59; 76%).
ADJ
tokens may have the following values of Gender
:
Fem
(26; 33% of non-emptyGender
): мила, Зелена, Минулої, Найпростіша, бронзову, втомлена, вчорашньої, гарна, голою, дев’ятоюMasc
(32; 41% of non-emptyGender
): перший, швидший, першим, повинен, чесний, Кінцевий, Одинокий, Оскарженого, висланий, високийNeut
(20; 26% of non-emptyGender
): Важливим, далекому, минулому, розташоване, зауважене, зроблене, легшого, минулим, передбачене, пожовтілимEMPTY
(14): Бородаті, Кольорові, Об’єднаних, Українські, американські, даними, делікатних, зловлені, злотих, незнайомими
Paradigm минулий | Fem | Neut |
---|---|---|
Case=Gen | Минулої | |
Case=Ins | минулим | |
Case=Loc | минулому |
Gender
seems to be lexical feature of ADJ
. 96% lemmas (54) occur only with one value of Gender
.
PROPN
49 PROPN tokens (96% of all PROPN
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which PROPN
and Gender
co-occurred: Animacy=Anim (41; 84%), Case=Nom (33; 67%).
PROPN
tokens may have the following values of Gender
:
Fem
(12; 24% of non-emptyGender
): Крушельниця, С’юзі, Маріє, Ніна, Олени, Полтави, Розмарі, Савченко, Христина, ШевченкоMasc
(37; 76% of non-emptyGender
): Микола, Павло, Богдан, Кеннеді, Петро, Стрий, Іван, Ігоря, Богдана, ВалентинаEMPTY
(2): Карпатах, Самсунг
Gender
seems to be lexical feature of PROPN
. 100% lemmas (36) occur only with one value of Gender
.
DET
23 DET tokens (68% of all DET
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which DET
and Gender
co-occurred: Number=EMPTY (23; 100%), Person=EMPTY (19; 83%), Reflex=EMPTY (19; 83%), Poss=EMPTY (15; 65%), Case=Nom (12; 52%).
DET
tokens may have the following values of Gender
:
Fem
(12; 52% of non-emptyGender
): свою, його, Котра, Котру, Та, Ця, моя, цієї, якусьMasc
(11; 48% of non-emptyGender
): той, цей, кожному, котрого, мій, свого, такий, якийEMPTY
(11): Ті, Ваші, своїми, своїх, такими, усіх, цих, іншими, її
Paradigm той | Masc | Fem |
---|---|---|
той | Та |
NUM
4 NUM tokens (11% of all NUM
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which NUM
and Gender
co-occurred: NumType=Card (4; 100%), Number=EMPTY (4; 100%), Case=Acc (3; 75%).
NUM
tokens may have the following values of Gender
:
Fem
(2; 50% of non-emptyGender
): двіMasc
(2; 50% of non-emptyGender
): Один, півтораEMPTY
(33): 50, мільйонів, 5, 200, 3, 8, П’ять, багатьма, 1, 14
Relations with Agreement in Gender
The 10 most frequent relations where parent and child node agree in Gender
:
NOUN –[amod]–> ADJ (29; 85%),
VERB –[nsubj]–> NOUN (18; 53%),
VERB –[nsubj]–> PROPN (13; 81%),
NOUN –[det]–> DET (13; 72%),
ADJ –[nsubj]–> NOUN (8; 100%),
VERB –[parataxis]–> VERB (6; 75%),
VERB –[aux]–> VERB (5; 63%),
PROPN –[name]–> PROPN (3; 75%),
PROPN –[appos]–> NOUN (3; 75%),
VERB –[conj]–> VERB (3; 100%).
Gender in other languages: [bg] [cs] [de] [el] [en] [es] [eu] [fa] [fr] [ga] [he] [hu] [it] [ja] [ko] [sv] [u]