Gender
: gender
This document is a placeholder for the language-specific documentation
for Gender
.
Treebank Statistics (UD_Latvian)
This feature is universal.
It occurs with 2 different values: Fem
, Masc
.
10173 tokens (49%) have a non-empty value of Gender
.
4875 types (77%) occur at least once with a non-empty value of Gender
.
2769 lemmas (71%) occur at least once with a non-empty value of Gender
.
The feature is used with 8 part-of-speech tags: NOUN (6237; 30% instances), PROPN (1186; 6% instances), ADJ (962; 5% instances), VERB (778; 4% instances), PRON (412; 2% instances), DET (391; 2% instances), NUM (130; 1% instances), SCONJ (77; 0% instances).
NOUN
6237 NOUN tokens (100% of all NOUN
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which NOUN
and Gender
co-occurred: Number=Sing (4384; 70%).
NOUN
tokens may have the following values of Gender
:
Fem
(3234; 52% of non-emptyGender
): valsts, finanšu, pašvaldības, bibliotēkas, valdes, grāmatas, degvielas, padomes, Dienas, apsaimniekošanasMasc
(3003; 48% of non-emptyGender
): gada, gadā, atkritumu, latu, uzņēmuma, laikā, datu, uzņēmums, gadu, projektuEMPTY
(2): FOTO, postpadomju
Paradigm būvkompānija | Masc | Fem |
---|---|---|
Case=Acc|Number=Sing | būvkompāniju | |
Case=Gen|Number=Plur | Būvkompāniju | būvkompāniju |
Gender
seems to be lexical feature of NOUN
. 100% lemmas (1570) occur only with one value of Gender
.
PROPN
1186 PROPN tokens (75% of all PROPN
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which PROPN
and Gender
co-occurred: Number=Sing (1155; 97%).
PROPN
tokens may have the following values of Gender
:
Fem
(635; 54% of non-emptyGender
): Latvijas, Latvijā, Eiropas, Rīgas, Jelgavas, Rīga, Baltijas, Rīgā, LETA, LatvijaMasc
(551; 46% of non-emptyGender
): Andris, Vilks, Ģirts, Kuplais, Grūtupa, Latvenergo, Ziedonis, Jānis, Andra, BērziņšEMPTY
(390): Lattelecom, SIA, ZAAO, Pillar, LETA, AS, IKP, IMS, DUS, UNESCO
Paradigm Seisums | Masc | Fem |
---|---|---|
Case=Gen | Seisuma | |
Case=Nom | Seisuma |
Gender
seems to be lexical feature of PROPN
. 100% lemmas (424) occur only with one value of Gender
.
ADJ
962 ADJ tokens (81% of all ADJ
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which ADJ
and Gender
co-occurred: NumType=EMPTY (924; 96%), Degree=Pos (864; 90%), Number=Sing (640; 67%).
ADJ
tokens may have the following values of Gender
:
Fem
(465; 48% of non-emptyGender
): nacionālās, jaunās, sabiedrisko, lielu, otrās, reģionālās, Nacionālā, augstas, jauno, jaunuMasc
(497; 52% of non-emptyGender
): galvenais, papildu, lielākajiem, nekustamā, jauna, liels, lielākie, pirmais, tuvākajā, dažāduEMPTY
(222): 2012., 2011., 2013., 2010., 11., 6., 13., 15., 2014., 7.
Paradigm liela | Masc | Fem |
---|---|---|
Case=Acc|Degree=Pos|Number=Sing | lielu | lielu |
Case=Acc|Degree=Pos|Number=Plur | lielas | |
Case=Acc|Degree=Cmp|Number=Sing | lielāko | |
Case=Dat|Degree=Cmp|Number=Sing | lielākajai | |
Case=Loc|Degree=Pos|Number=Sing | lielajā | |
Case=Nom|Degree=Pos|Number=Sing | liela | |
Case=Nom|Degree=Pos|Number=Plur | lielas | |
Case=Nom|Degree=Cmp|Number=Sing | lielākā, lielāka |
Gender
seems to be lexical feature of ADJ
. 99% lemmas (386) occur only with one value of Gender
.
VERB
778 VERB tokens (26% of all VERB
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which VERB
and Gender
co-occurred: Mood=EMPTY (778; 100%), Negative=EMPTY (778; 100%), Person=EMPTY (778; 100%), VerbForm=Part (777; 100%), Degree=Pos (776; 100%), Tense=Past (667; 86%), Aspect=Perf (667; 86%), Voice=EMPTY (667; 86%), Definite=Ind (586; 75%), Case=Nom (585; 75%).
VERB
tokens may have the following values of Gender
:
Fem
(287; 37% of non-emptyGender
): izlietojusi, attīstīta, pieejama, celta, iesaistītajām, izdotas, izteikta, konstatējusi, konstatēta, veiktaMasc
(491; 63% of non-emptyGender
): bijis, dibināts, saņēmis, ziņots, saistīts, paredzēts, plānots, aizgājis, beidzis, dzimisEMPTY
(2161): ir, bija, nav, būs, varētu, tika, tiek, būtu, tiks, notiek
Paradigm būt | Masc | Fem |
---|---|---|
Aspect=Imp|Case=Acc|Definite=Def|Number=Sing|Tense=Pres|Voice=Pass | esošo | |
Aspect=Imp|Case=Acc|Definite=Def|Number=Plur|Tense=Pres|Voice=Pass | esošos | |
Aspect=Imp|Case=Dat|Definite=Ind|Number=Plur|Tense=Pres|Voice=Pass | esošiem | |
Aspect=Imp|Case=Gen|Definite=Def|Number=Plur|Tense=Pres|Voice=Pass | esošo | |
Aspect=Imp|Case=Loc|Definite=Ind|Number=Plur|Tense=Pres|Voice=Pass | esošās | |
Aspect=Imp|Case=Nom|Definite=Def|Number=Sing|Tense=Pres|Voice=Pass | esošais | esošā |
Aspect=Perf|Case=Acc|Definite=Def|Number=Sing|Tense=Past | bijušo | |
Aspect=Perf|Case=Nom|Definite=Ind|Number=Sing|Tense=Past | bijis | bijusi |
Aspect=Perf|Case=Nom|Definite=Ind|Number=Plur|Tense=Past | bijuši | bijušas |
PRON
412 PRON tokens (73% of all PRON
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which PRON
and Gender
co-occurred: Number=Sing (333; 81%), Person=EMPTY (324; 79%), PronType=Dem (233; 57%), Case=Nom (210; 51%).
PRON
tokens may have the following values of Gender
:
Fem
(84; 20% of non-emptyGender
): tā, tās, kāda, to, kādas, viņa, viņas, kādā, tai, tādaMasc
(328; 80% of non-emptyGender
): tas, to, viņš, viņa, tam, viss, viņi, viņu, tie, viņamEMPTY
(153): es, kas, ko, mēs, man, mums, jūs, jums, mūsu, sev
Gender
seems to be lexical feature of PRON
. 100% lemmas (31) occur only with one value of Gender
.
DET
391 DET tokens (100% of all DET
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which DET
and Gender
co-occurred: Poss=EMPTY (351; 90%), Number=Sing (248; 63%), PronType=Dem (201; 51%).
DET
tokens may have the following values of Gender
:
Fem
(172; 44% of non-emptyGender
): šo, šīs, šāda, savu, visas, šī, tās, šajā, citām, kādasMasc
(219; 56% of non-emptyGender
): šo, tā, šis, šī, savu, to, šajā, cits, citus, tādsEMPTY
(1): kā
Paradigm sava | Masc | Fem |
---|---|---|
Case=Acc|Number=Sing | savu | |
Case=Acc|Number=Plur | savas | |
Case=Loc|Number=Sing | savā | savā |
Case=Loc|Number=Plur | Savās |
Gender
seems to be lexical feature of DET
. 95% lemmas (37) occur only with one value of Gender
.
NUM
130 NUM tokens (31% of all NUM
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which NUM
and Gender
co-occurred: NumType=Card (130; 100%), Number=Plur (72; 55%).
NUM
tokens may have the following values of Gender
:
Fem
(45; 35% of non-emptyGender
): viena, trīs, divas, divām, vienai, vienas, vienu, vienā, divu, piecāmMasc
(85; 65% of non-emptyGender
): viens, trīs, vienu, tūkstošiem, četri, deviņos, divi, diviem, otrs, pieciEMPTY
(294): 000, 25, 1, 3, 50, desmit, 20, 200, 8000, 11
Paradigm viena | Masc | Fem |
---|---|---|
Case=Acc | vienu | |
Case=Dat | vienai | |
Case=Gen | vienas | |
Case=Loc | vienā | vienā |
Case=Nom | viena |
SCONJ
77 SCONJ tokens (13% of all SCONJ
tokens) have a non-empty value of Gender
.
The most frequent other feature values with which SCONJ
and Gender
co-occurred: PronType=Rel (77; 100%), Number=Sing (44; 57%).
SCONJ
tokens may have the following values of Gender
:
Fem
(29; 38% of non-emptyGender
): kuras, kurā, kuru, kurām, kurai, kurās, kura, kādaMasc
(48; 62% of non-emptyGender
): kuriem, kurš, kuri, kuru, kurā, kuram, kura, kāds, kuros, kurusEMPTY
(511): ka, kas, kā, lai, jo, ja, nekā, vai, ko, gan
Relations with Agreement in Gender
The 10 most frequent relations where parent and child node agree in Gender
:
NOUN –[nmod]–> NOUN (1232; 54%),
NOUN –[amod]–> ADJ (776; 79%),
NOUN –[det]–> DET (354; 95%),
NOUN –[conj]–> NOUN (259; 66%),
PROPN –[name]–> PROPN (226; 97%),
NOUN –[amod]–> VERB (225; 97%),
VERB –[nsubjpass]–> NOUN (156; 97%),
PROPN –[nmod]–> NOUN (149; 74%),
NOUN –[acl]–> NOUN (90; 53%),
PROPN –[conj]–> PROPN (63; 62%).
Gender in other languages: [bg] [cs] [de] [el] [en] [es] [eu] [fa] [fr] [ga] [he] [hu] [it] [ja] [ko] [sv] [u]