home edit page issue tracker

This page pertains to UD version 2.

Treebank Statistics: UD_French-PUD: POS Tags: PROPN

There are 1 PROPN lemmas (5%), 857 PROPN types (14%) and 1241 PROPN tokens (5%). Out of 16 observed tags, the rank of PROPN is: 11 in number of lemmas, 4 in number of types and 8 in number of tokens.

The 10 most frequent PROPN lemmas: _

The 10 most frequent PROPN types: Chine, Trump, J.-C., États-Unis, Amérique, Europe, Australie, France, Italie, Afrique

The 10 most frequent ambiguous lemmas: _ (NOUN 4804, ADP 3324, DET 3037, VERB 3024, PUNCT 2548, ADJ 1607, PRON 1335, PROPN 1241, ADV 1035, CCONJ 562, NUM 458, AUX 274, SCONJ 206, X 48, SYM 34, PART 9)

The 10 most frequent ambiguous types: Caraïbes (PROPN 5, NOUN 1), Danevirke (PROPN 3, NOUN 1), Antilles (PROPN 2, NOUN 1), Balkans (PROPN 2, NOUN 1), Caroline (PROPN 2, NOUN 1), Terre (NOUN 2, PROPN 2), lune (NOUN 2, PROPN 2), Bass (NOUN 1, PROPN 1), Il (PRON 71, PROPN 1), News (NOUN 1, PROPN 1)

Morphology

The form / lemma ratio of PROPN is 857.000000 (the average of all parts of speech is 309.550000).

The 1st highest number of forms (857) was observed with the lemma “_”: -février, AKP, Abakumov, Abbotsford, Addenbrooke, Adidas, Adnan, Adriatique, Afrique, Aires, Alaska, Albanie, Albany, Aldrin, Alejandra, Alexander, Alexandre, Alfred, Algérie, Alice, Allemagne, Alpes, Alvarez, Amarna, Amazon, America, Amin, Amurru, Amyntas, Amérique, Amériques, Anaya, Andes, Andre, Andrew, Andy, Angel, Angeles, Angleterre, Anne, Anselmi, Anshi, Antarctique, Antilles, Antipas, Antoine, Antonio, Aoun, Apple, Asie, Asie-Pacifique, Asty, Athina, Athènes, Atkinson, Atlantique, Audrey, Auguste, Austerlitz, Australie, Autriche, Avery, Aviva, Avro, BA, BBC, BCE, Badarpur, Bade-Wurtemberg, Balkans, Bambang, Bangkok, Barratt, Barrie, Barroso, Bass, Basse-Autriche, Basse-Californie, Bavière, Beaufort, Belgique, Belgrade, Bellingham, Bellingshausen, Benoît, Bergeron, Beria, Berlin, Bernard, Beust, Beverly, Bian, Bill, Billboard, Blindleia, Bloch, Blunt, Bob, Boeing, Boemer, Bogart, Bogdo, Bonaparte, Bono, Bosphore, Bouchard, Bransfield, Brant, Breasted, Brexit, Brice, Brisbane, Brooks, Bruce, Bruno, Bruyn, Brésil, Brême, Buena, Buenos, Burgoyne, Bush, Byzance, Báñez, C.B., CBS, CCN, CGI, CM1, CNN, CRTC, CTV, Caire, Calabre, Cambridgeshire, Cameroun, Campbell, Canada, Capitole, Caplan, Capoue, Caracalla, Carangi, Caraïbes, Carcassonne, Caribes, Carlo, Carlos, Caroline, Carson, Carter, Castelfranco, Catalano, Catherine, Caucase, CeCe, Chamberlain, Chandler, Chapel, Charles, Chilia, Chine, Chris, Christian, Christophe, Churchill, Cifuentes, Ciscaucasie, Claret, Clinton, Clyde, Cologne, Colomb, Colorado, Comey, Congo, Consumer, Corinthe, Corona, Corrado, Corée, Cospedal, Cotton, Cranach, Crimée, Cristina, Crouch, Cuaron, Cuba, Cumberland, Curie, Curio, Cécile, César, DPA, Danemark, Danevirke, Danube, Darius, Darnand, Dati, David, Davis, Dean, Decca, Dee, Delhi, Denver, Diess, Dietrich, Dieu, Disibodenberg, Disney, Domenico, Donald, Dorset, Doss, Douglas, Duffy, Durán, Dündar, E.E., EMicro, ETA, Eagle, Eckhart, Edgar, Edinburgh, Edward, Egan, Egypte, Eibingen, Elaine, Elizabeth, Elliott, Emily, Ennio, Enrique, Eon, Erdogan, Erik, Ernest, Ernst, Errani, Espagne, Essen, Eugénie, Europe, Ewan, ExxonMobil, FO, FSLN, Facebook, Fallon, Federico, Felipe, Fellini, Figaro, Finlande, Fiorello, Flensburg, Florence, Floride, Fontvieille, Ford, Forums, France, Frank, François, François-Joseph, Freeman, Friedrich, Fátima, GCA, GCHQ, GEMA, GTA, Galle, Gamson, Gand, Garrard, Garth, Gaudí, Gaulle, Gay, Gazette, George, Georges, Georgetown, Germaine, Geronimo, Gerry, Geyer, Gezer, Gezira, Gia, Gillard, Giovanni, Glasgow, Glenda, Glinda, Gloria, Goffredo, Gold, Gomery, Gonzáles, González, Google, Gordon-Levitt, Grafton, Grande-Bretagne, Grande-Moravie, Gravity, Grenville, Grèce, Guam, Guangzhou, Guilbeault, Guilford, Günter, Habsbourg, Hack, Halifax, Hallström, Hammersmith, Hans, Hariri, Harley-Davidson, Harvard, Haute-Garonne, Hechler, Hedy, Heinrich, Henri, Henry, Hepburn, Herbert, Herzl, Hillary, Hillsborough, Hispanie, Hitchcock, Hitler, Holden, Hollywood, Homer, Hong, Hongrie, Hortefeux, Horton, Huawei, Hubei, Hudson, Hugh, Humblebums, Humphrey, Hunan, Husum, Hérode, Hérodias, IAG, IRENA, Ieyasu, Il, Inde, Indiana, Inn, Iran, Irlande, Irène, Isabelle, Islande, Isner, Israël, Istanbul, Italie, J-C, J.-C, J.-C., J.C, James, Japon, Jasmine, Jason, Javier, Jean, Jeff, Jeffery, Jennings, Jesse, Jim, Jimmy, Joan, Joe, John, Johnny, Johnson, Jokowi, Joliot-Curie, Jong, Joseph, Juan, Julien, Juliette, Jutting, Jérusalem, Jésus, KFC, KGB, Kamchatka, Kansas, Karel, Karnak, Keira, Kenseth, Kentucky, Kenya, Kesha, Kesteven, Khan, Khanzir, Kiera, Kigali, Kiki, Kilimandjaro, Kim, King, Kipling, Kirriemuir, Klein, Knightley, Knott, Kong, Kongmin, Kori, Koryo, Kramer, Krasnoïarsk, Kristiansand, Kristin, Krätschmer, Kuo, Kühn, LUISS, LaBeouf, LaBrocca, Lahore, Lamarr, Larry, Lasse, Latium, Laurent, Lavrenti, Lee, Leive, Lennox, Lenny, Liao, Lillesand, Lin, Linares, Lincoln, Lindsay, Londres, Los, Louis, Loving, Lubumbashi, Lucas, Luis, Luther, Lyvet, Macédoine, Macédoine-Orientale-et-Thrace, Madrid, Maglev, MahaNakhon, Mailis, Malleus, Mandl, Marat, Marc, Marcelle, Marco, Marengo, Margaret, Marguerite, Marina, Mark, Maroc, Maroto, Marr, Martin, Marvel, Mate, May, Mayor, McGregor, McNeilly, Meiji, Melania, Merdigen, Mesta, Mestre, Mexique, Meyer, Meza, Miami, Michael, Michel, Microsoft, Milan, Mildred, Millican, Mishima, Mississippi, Mohammed, Mojmír, Molise, Monaco, Mongolie, Mongolie-Extérieure, Monte, Montréal, Moravie, Morgan, Morricone, Moscone, Murphy, Méditerranée, Mégabaze, Mésoamérique, Mômone, NASCAR, NHS, Nankin, Napoléon, Nashville, Nectar, Negan, Nestus, Nevada, Neville, News, Newton, Nicholas, Nicolai, Nicolas, Nil, Nitra, NoMa, Norma, Norman, North, Northampton, Norvège, Nottingham, Nouvelle-France, ONU, Obama, Obermarsberg, Occident, Odessa, Odi, Ohio, Olivia, Olney, Ontario, Osborne, Oscar, Oswald, Otan, Pacifique, Packam, Paire, Pall, Palma, Palmer, Panama, Panvalkar, Papouasie-Nouvelle-Guinée, Papworth, Paris, Parker, Parme, Passera, Paul, Pebe, Pedro, Pelucca, Peniston, Perse, Petrassi, Pettersson, Petén, Philippe, Piaf, Pierre, Piggy, Pilates, Pintado, Plano, Plantagenet, Platon, Politti, Pologne, Pompée, Poole, Porto, Portugal, Potomac, Pouilles, Prabowo, Press, Price, Pugh, Pyongyang, Pyrrhus, Pékin, Péking, Péloponnèse, Péonie, Pô, Qadesh, Qing, RECO, RHS, RSC, RSPB, Rachel, Rachida, Rafferty, Rai, Rambler, Rambow, Ramsès, Rastislav, Rastiz, Ray, Reagan, Rebecca, Recep, Reddit, Reichenbach, Remi, Renee, Renée, Rhin, Rhône, Rian, Rich, Richard, Rico, Robinson, Rocco, Rogers, Rome, Romeo, Rona, Ronald, Rosana, Rossi, Roumanie, Rudolph, Rudyard, Rupertsberg, Russie, SS, Sabrina, Sade, Sahara, Sahel, Saint, Saint-Gaudens, Sainte-Cécile, Sainte-Hélène, Sainte-Marthe, Sakhalin, Salaman, Salas, Salerne, Sallyanne, Salzburg, Samnium, Samsung, San, Saqib, Sara, Sarah, Saratoga, Sarkozy, SaskTel, Saul, Schenck, Schlei, Schulman, Scotland, Scott, Scritti, Scythie, Seagal, Seber, Segel, Serena, Sesto, Shackleton, Shanghai, Shen, Shenzhen, Sheppard, Shikai, Shōwa, Sibérie, Sicile, Simon, Siri, Slack, Slate, Slovaquie, Smaragdis, Smith, Snapchat, Snowman, Solheim, Somerset, Sony, Southsea, Sparte, Spotify, Spring, Springer, Staline, Starlin, Stephen, Sternlieb, Stoller, Strathearn, Subianto, Suez, Suisse, Sukhothai, Sulla, Sunderland, Susilo, Suède, Sánchez, Sénat, Südbaden, T, TVA, Talmadge, Tanzanie, Tapie, Tarlo, Tayyip, Tchécoslovaquie, Telecom, Tennessee, Terre, Tesco, Tesla, Tessin, Texas, Thanos, Thaïlande, Thessalie, Thomas, Thompson, Thoutmôsis, Thrace, Théodore, Tibère, Tientsin, Tina, Tintin, Tioman, Tokugawa, Tolle, Tom, Transcaucasie, Trix, Troie, Trudeau, Trump, Tulcea, Tunip, Turquie, Twitter, UE, Uaxactun, Uber, Ukraine, Ulrich, Universal, VW, Valentino, Vance, Vantage, Vatican, Vega, Veneto, Venise, Viguier, Viktor, Villeneuve, Vine, Vladivostok, Von, Walt, Walter, Wang, Washington, Watt, Weiss, Weller, Wells, Wheeler, Wilkes, William, Williams, Willis, Winham, Winston, Winstone, Winterkorn, Wintour, Wolmar, Woods, Wright, Yannis, Yas, Yerba, York, Youtube, Yuan, Yucatán, Yudhoyono, Yukio, Yum, Yves, Z, Zay, Zayion, Zexu, Zimmer, Zuckerberg, Záhorie, al-Jadaan, lune, pluviôse, Ángel, Écosse, Édimbourg, Édith, États-Unis, Évole, Ötzi.

PROPN occurs with 2 features: Number (1241; 100% instances), Gender (970; 78% instances)

PROPN occurs with 4 feature-value pairs: Gender=Fem, Gender=Masc, Number=Plur, Number=Sing

PROPN occurs with 6 feature combinations. The most frequent feature combination is Gender=Masc|Number=Sing (598 tokens). Examples: Trump, J.-C., Joseph, Donald, Gerry, Cameroun, Disney, Edgar, Mexique, Rafferty

Relations

PROPN nodes are attached to their parents using 13 different relations: nmod (339; 27% instances), flat:name (224; 18% instances), nsubj (218; 18% instances), obl (169; 14% instances), appos (115; 9% instances), conj (68; 5% instances), obj (50; 4% instances), compound (32; 3% instances), nsubj:pass (20; 2% instances), root (3; 0% instances), acl:relcl (1; 0% instances), ccomp (1; 0% instances), xcomp (1; 0% instances)

Parents of PROPN nodes belong to 9 different parts of speech: NOUN (491; 40% instances), VERB (412; 33% instances), PROPN (284; 23% instances), ADJ (23; 2% instances), AUX (12; 1% instances), NUM (9; 1% instances), PRON (6; 0% instances), (3; 0% instances), ADP (1; 0% instances)

403 (32%) PROPN nodes are leaves.

437 (35%) PROPN nodes have one child.

283 (23%) PROPN nodes have two children.

118 (10%) PROPN nodes have three or more children.

The highest child degree of a PROPN node is 8.

Children of PROPN nodes are attached using 24 different relations: case (516; 37% instances), det (244; 17% instances), flat:name (213; 15% instances), punct (133; 9% instances), conj (78; 6% instances), cc (50; 4% instances), appos (44; 3% instances), nmod (40; 3% instances), amod (29; 2% instances), nummod (18; 1% instances), acl:relcl (17; 1% instances), advmod (4; 0% instances), ccomp (4; 0% instances), cop (4; 0% instances), nsubj (4; 0% instances), det:predet (2; 0% instances), mark (2; 0% instances), obl:tmod (2; 0% instances), compound (1; 0% instances), dep (1; 0% instances), nmod:poss (1; 0% instances), orphan (1; 0% instances), parataxis (1; 0% instances), xcomp (1; 0% instances)

Children of PROPN nodes belong to 15 different parts of speech: ADP (516; 37% instances), PROPN (284; 20% instances), DET (246; 17% instances), PUNCT (132; 9% instances), NOUN (92; 7% instances), CCONJ (50; 4% instances), ADJ (32; 2% instances), VERB (21; 1% instances), NUM (20; 1% instances), AUX (5; 0% instances), ADV (4; 0% instances), PRON (3; 0% instances), SYM (2; 0% instances), X (2; 0% instances), SCONJ (1; 0% instances)