

Tutorial on Universal Dependencies

Making use of UD in NLP and linguistics

Joakim Nivre¹ Daniel Zeman² Filip Ginter³ Francis M. Tyers⁴⁵

 $^{^{1}\}mathsf{Department}$ of Linguistics and Philology, Uppsala University, Sweden

²Institute of Formal and Applied Linguistics, Charles University in Prague, Czech Republic

³Department of Information Technology, University of Turku, Finland

⁴Giela ja kultuvrra instituhtta, UiT Norgga árktalaš universitehta, Tromsø, Norway

⁵Arvutiteaduse instituut, Tartu Ülikool, Estonia

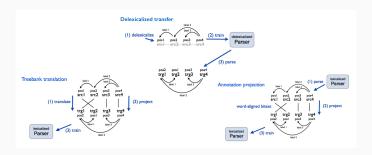
Parsing

- Monolingual parsing
 - Benchmarking for many different languages
 - Off-the-shelf models:
 - UDPipe
 - SyntaxNet
- Cross-lingual parsing
 - Usually motivated by a low-resource scenario
 - Three main approaches
 - Annotation projection (Hwa et al., 2002)
 - Model transfer (Zeman and Resnik, 2008)
 - Treebank translation (Tiedemann et al., 2014)
- Universal parsing
 - A single model for all languages (Ammar et al., 2016)

Cross-Lingual Parsing

				McDonald						
		da	de	el	en	es	it	nl	pt	sv
	da	79.2	45.2	44.0	45.9	45.0	48.6	46.1	48.1	47.8
an an	de	34.3	83.9	53.2	47.2	45.8	53.4	55.8	55.5	46.2
ng B	el	33.3	52.5	77.5	63.9	41.6	59.3	57.3	58.6	47.5
rest Language	en	34.4	37.9	45.7	82.5	28.5	38.6	43.7	42.3	43.7
S	es	38.1	49.4	57.3	53.3	79.7	68.4	51.2	66.7	41.4
3	it	44.8	56.7	66.8	57.7	64.7	79.3	57.6	69.1	50.9
<u> </u>	nl	38.7	43.7	62.1	60.8	40.9	50.4	73.6	58.5	44.2
larger	pt	42.5	52.0	66.6	69.2	68.5	74.7	67.1	84.6	52.1
	sv	44.5	57.0	57.8	58.3	46.3	53.4	54.5	66.8	84.8

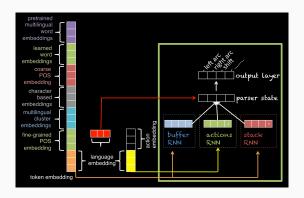
Cross-Lingual Parsing


				McDonald						
		da	de	el	en	es	it	nl	pt	sv
•	da	79.2	45.2	44.0	45.9	45.0	48.6	46.1	48.1	47.8
age	de	34.3	83.9	53.2	47.2	45.8	53.4	55.8	55.5	46.2
E .	el	33.3	52.5	77.5	63.9	41.6	59.3	57.3	58.6	47.5
Test Language	en	34.4	37.9	45.7	82.5	28.5	38.6	43.7	42.3	43.7
St.	es	38.1	49.4	57.3	53.3	79.7	68.4	51.2	66.7	41.4
9	it	44.8	56.7	66.8	57.7	64.7	79.3	57.6	69.1	50.9
Target	nl	38.7	43.7	62.1	60.8	40.9	50.4	73.6	58.5	44.2
	pt	42.5	52.0	66.6	69.2	68.5	74.7	67.1	84.6	52.1
	sv	44.5	57.0	57.8	58.3	46.3	53.4	54.5	66.8	84.8

											McDona	ıld et al.		
Source	Target Test Language													
Training		Unlabele	d Attach	ment Sco	re (UAS))	Labeled Attachment Score (LAS)							
Language		Germanie	2	Rom	ance		Germanic Ro				omance			
Language	DE	EN	SV	ES	FR	KO	DE	EN	SV	ES	FR	KO		
DE	74.86	55.05	65.89	60.65	62.18	40.59	64.84	47.09	53.57	48.14	49.59	27.73		
EN	58.50	83.33	70.56	68.07	70.14	42.37	48.11	78.54	57.04	56.86	58.20	26.65		
SV	61.25	61.20	80.01	67.50	67.69	36.95	52.19	49.71	70.90	54.72	54.96	19.64		
ES	55.39	58.56	66.84	78.46	75.12	30.25	45.52	47.87	53.09	70.29	63.65	16.54		
FR	55.05	59.02	65.05	72.30	81.44	35.79	45.96	47.41	52.25	62.56	73.37	20.84		
KO	33.04	32.20	27.62	26.91	29.35	71.22	26.36	21.81	18.12	18.63	19.52	55.85		

Cross-Lingual Parsing

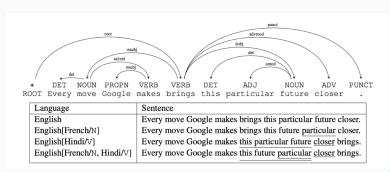
Tiedemann (2015) Cross-Lingual Dependency Parsing with Universal Dependencies and Predicted PoS Labels



- Three methods for cross-lingual dependency parsing
- The impact of not having gold part-of-speech tags
- Reveals weaknesses of delexicalized model transfer

Universal Parsing

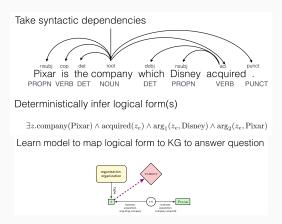
Ammar et al. (2016) Many Languages, One Parser



- Parsing with multiple source and target languages
- Multilingual word embeddings and typological features
- Gain on "small" languages without loss on "big" languages

Need More Data?

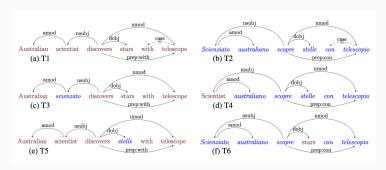
Wang and Eisner (2016) The Galactic Dependencies Treebanks: Getting
More Data by Synthesizing New Languages



- Synthesizing treebanks for new (potential) natural languages
- Reorder N- and/or V-dependents in L₁ with model trained on L₂

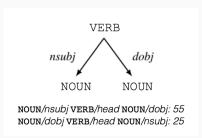

Semantic Parsing

Reddy et al. (2016) Transforming Dependency Structures to Logical Forms for Semantic Parsing


Semantic Parsing

Cross-Lingual Word Embeddings

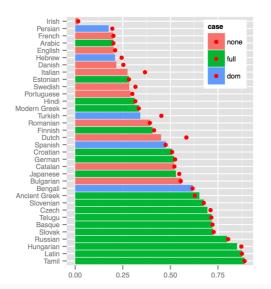
Vulić (2017) Cross-Lingual Syntactically Informed Distributed Word Representations



- Cross-lingual UD-parsed corpora (using bilingual lexicon)
- Evaluated on word similarity and bilingual lexicon induction
- Outperforms cross-lingual/no syntax and monolingual/syntax

Linguistic Typology

Futrell et al. (2015) Quantifying Word Order Freedom in Dependency Corpora



- Word order freedom = conditional entropy of order given tree
- Test hypotheses about case marking and word order freedom

Linguistic Typology

Relation Order Entropy of Subject and Object

Linguistic Typology

Östling (2015) Word Order Typology through Multilingual Word Alignment

Feature	Languages	Types	Tokens	Most common
81A: Subject, Object, Verb (Dryer, 2013e)	342	85.4%	85.7%	SOV: 43.3%
82A: Subject, Verb (Dryer, 2013d)	376	89.4%	90.4%	SV: 79.8%
83A: Object, Verb (Dryer, 2013c)	387	96.4%	96.4%	VO: 54.8%
85A: Adposition, Noun Phrase (Dryer, 2013b)	329	94.8%	95.1%	Prep: 50.4%
87A: Adjective, Noun (Dryer, 2013a)	334	85.9%	88.0%	AdjN: 68.9%

- Word order study based on Bible translations (986 languages)
- Massively parallel alignment and UD annotation projection
- Evaluation against WALS for a subset of languages

Is UD really suitable for all it is used for?

Manning's Law

The secret to understanding the design of UD is to realize that it is a very subtle compromise between approximately 6 things:

- 1. UD needs to be satisfactory for analysis of individual languages.
- 2. UD needs to be good for linguistic typology.
- 3. UD must be suitable for rapid, consistent annotation.
- 4. UD must be suitable for computer parsing with high accuracy.
- 5. UD must be easily comprehended and used by a non-linguist.
- 6. UD must provide good support for downstream NLP tasks.

It's easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.

Questions?

